What harm can having too little of vitamin B12 do? Consider this: Over the course of two months, a 62-year-old man developed numbness and a “pins and needles” sensation in his hands, had trouble walking, experienced severe joint pain, began turning yellow, and became progressively short of breath. The cause was lack of vitamin B12 in his bloodstream, according to a case report from Harvard-affiliated Massachusetts General Hospital published in The New England Journal of Medicine. It could have been worse—a severe vitamin B12 deficiency can lead to deep depression, paranoia and delusions, memory loss, incontinence, loss of taste and smell, and more.
This article was written by Harvard Health Publishing Staff for the website Harvard Health Publishing. Follow Harvard Health Publishing by clicking the following link: https://www.health.harvard.edu/healthbeat
Why vitamin B12 is important.
The human body needs vitamin B12 to make red blood cells, nerves, DNA, and carry out other functions. The average adult should get 2.4 micrograms a day. Like most vitamins, B12 can’t be made by the body. Instead, it must be gotten from food or supplements.
And therein lies the problem: Some people don’t consume enough vitamin B12 to meet their needs, while others can’t absorb enough, no matter how much they take in. As a result, vitamin B12 deficiency is relatively common, especially among older people.
Are you at risk of vitamin B12 deficiency?
There are many causes for vitamin B12 deficiency. Surprisingly, two of them are practices often undertaken to improve health: a vegetarian diet and weight-loss surgery.
Plants don’t make vitamin B12. The only foods that deliver it are meat, eggs, poultry, dairy products, and other foods from animals. Strict vegetarians and vegans are at high risk for developing a B12 deficiency if they don’t eat grains that have been fortified with the vitamin or take a vitamin supplement. People who have weight-loss surgery are also more likely to be low in vitamin B12 because the operation interferes with the body’s ability to extract vitamin B12 from food.
Conditions that interfere with nutrient absorption, such as celiac or Crohn’s disease, can cause B12trouble. So can the use of commonly prescribed heartburn drugs, which reduce acid production in the stomach (acid is needed to absorb vitamin B12). The condition is more likely to occur in older people due to the decrease in stomach acid production that often occurs with aging.
Vitamin B12 deficiency symptoms
Vitamin B12 deficiency can be slow to develop, causing symptoms to appear gradually and intensify over time. It can also come on relatively quickly. Given the array of symptoms a vitamin B12 deficiency can cause, the condition can be overlooked or confused with something else. Vitamin B12 deficiency symptoms may include:
strange sensations, numbness, or tingling in the hands, legs, or feet
difficulty thinking and reasoning (cognitive difficulties), or memory loss
weakness
fatigue
While an experienced physician may notice the symptoms and be able to detect a vitamin B12 deficiency with a good interview and physical exam, a blood test is needed to confirm the condition.
It’s a good idea to ask your doctor about having your B12 level checked if you are a strict vegetarian or have had weight-loss surgery or have a condition that interferes with the absorption of food.
Early detection and treatment is important. If left untreated, the deficiency can cause severe neurologic problems and blood diseases.
Boosting your B12
A serious vitamin B12 deficiency can be corrected two ways: weekly shots of vitamin B12 or daily B12 supplements. A mild B12 deficiency can be corrected with a standard supplement.
In many people, a vitamin B12 deficiency can be prevented. If you are a strict vegetarian or vegan, it’s important to eat breads, cereals, or other grains that have been fortified with vitamin B12 or take a daily supplement. A standard multivitamin delivers 6 micrograms, more than enough to cover the average body’s daily need.
What vitamin B12 can’t do
The Internet is full of articles lauding the use of vitamin B12 to prevent Alzheimer’s disease, heart disease, and other chronic conditions or reverse infertility, fatigue, eczema, and a long list of other health problems. Most are based on poor or faulty evidence.
Take Alzheimer’s disease as an example. Although there is a relationship between low vitamin B12 levels and cognitive decline, clinical studies—including those involving people with Alzheimer’s disease—have not shown improvement in cognitive function, even doses of the vitamin as high as 1000 micrograms.
For now, it’s best to get enough vitamin B12 to prevent a deficiency, and not look to it as a remedy for what ails you.
Oshun Health’s Liposomal B-Complex is made from the metabolites of vitamin‐producing microorganisms (probiotics). It, therefore, provides a natural alternative to chemically synthesised vitamin B supplements while not containing animal products. All the B-vitamins are in their biologically active forms. The product also, naturally, contains 8 essential amino acids as well as vitamin K and other nutrients as further byproducts of microbial activity. Liposomal B-Complex is highly absorbable due to our liposomal absorption technology – fulvisomes.
Don’t miss out on our 50% Citrus C Plus discount for first-time buyers, includes free delivery.
Family Combo Packs
We want to ensure your entire family benefits from our products, young and old.
Need to know anything?
See our FAQ page if you need more information or send us an email.
Wholefood Supplements
Fulvic Acid as a Potent Antiviral
Updated: 25 February 2025
Reading time: 10 minutes
Table of Contents
Research shows that humic acid, of which fulvic acid forms part, binds so strongly to viruses that it can actually displace them from a cell surface. In vitro studies have shown, for example, that if you allow herpes simplex viruses to attach to host cells and then add humic acid to the solution, it will displace viruses from infected cell surfaces. That is, humic acid has a greater affinity for the virus than the virus does for the host cell. Thus, humic acid can actually displace a virus even after it has attached itself to the surface of a cell.[6]
The following article was originally posted by Michael Ash for the website of Clinical Education, a ‘Not for Profit’ organisation that brings a range of educational experiences to healthcare professionals. Follow Clinical Education by clicking on the following link: https://www.clinicaleducation.org/
The interview with Richard J Laub, MS, PhD, CChem, FRSC, was conducted by Focus Allergy Research Group.
*Note by Oshun Health: Humic Acids referred to in this article is the collective name for both humic acid and fulvic acid. In order to utilise humic acid, it is broken down to fulvic acid in the human gut. This is because humic acid is not soluble at the low pH (acidic) level of the stomach whereas fulvic acid is soluble at any pH level. The antiviral properties referred to in the article, therefore, applies to fulvic acid as well as humic acid.
An Interview with: Richard J Laub, MS, PhD, CChem, FRSC, is a chemist with nearly 150 peer-reviewed published research papers, sixteen patents, and numerous invited reviews and symposium presentations. He was formerly a professor of chemistry at The Ohio State University and San Diego State University, was a fellow of the Royal Society of Chemistry in London, England, was an Alcoa fellow in San Diego, and a Science Research Council fellow in Swansea, Wales. For the last 17 years, Dr. Laub has focused exclusively on sourcing, analysing, studying, extracting and purifying humic acid, a remarkable high-mineral, healing substance with potent antiviral properties, found in ancient soil deposits.
Focus: You have devoted the last 17 years of your life to researching humic acid, an extract of ancient organic soil deposits. These ancient soil deposits—named humus, or humin, from the Greek word for soil—can be found all over the world and contain highly-concentrated minerals and healing substances. It’s interesting that in essence, the soil that nourishes plant life–and later the plant that dies and becomes part of the soil–contains such potent healing substances. Can you give us some basic facts about humic and fulvic acids before we discuss the health benefits?
RJL: Both humic and fulvic acids are extracts from composted organic matter and prove to be excellent mineral supplements. They excel at providing all the trace minerals we need. Fulvic acid is a small and somewhat rigid molecule, with a molecular weight of about 1,500 daltons (a dalton is a unit of mass commonly used in chemistry). Humic acid is equally potent as a mineral supplement, but is a much heavier, bigger molecule. It weighs about 50,000 daltons. Humic acid is flexible, because it is made up of many chains of molecules. It looks a bit like a series of wagon wheels, one inside the other, with spokes going from one wheel to the next. This flexibility is a very important contributor to its antiviral properties.
Focus: What do these very different shapes—small and rigid, or large and flexible—mean in terms of human health?
RJL: Because of its size and flexibility, certain humic acids from particular soil deposits turn out to be potent, broad-spectrum antivirals. That is because humic acid contains many kinds of “functional groups” (specific groups of atoms) that can bind to a multitude of viruses. Research has shown certain humic acids to be effective in vitro against a wide range of viruses, including influenza, HSV, HIV, and others.[1],[2],[3],[4],[5]
Focus: How exactly does humic acid bind to a virus?
RJL: Binding occurs through hydrogen bonding. Electropositive atoms attract electronegative atoms. These are the same forces that hold DNA together. What is remarkable is that humic acid, with its many kinds of functional groups, binds more strongly to viruses than do our own cells. Certain humic acids from certain soil deposits are essentially like a really, really sticky piece of Velcro. Viruses also have really sticky sites—that’s how they manage to bind to a host cell. When these two very sticky pieces of Velcro come together they bind together very strongly.
Focus: Can you explain what a virus does once it attaches to a cell receptor?
RJL: It essentially pokes a hole in the cell, and injects either its RNA or DNA–its genomic material–into the cell. At that point the virus has essentially spent itself, but the viral material inside the cell uses the cell’s machinery to create more viruses, which then leave the cell and go on to bind to and infect other cells.
Focus: What happens to a virus when it binds to humic acid instead of a cell surface?
RJL: Humic acid essentially neutralises a virus’s chemical “stickiness”. Doing so in turn prevents the virus from reproducing since it can no longer attach (“fuse”) to the surface of a host cell. The immune system can then begin to eliminate the virus (largely through the action of macrophages). Also, viruses don’t live forever: if not allowed to reproduce, influenza viruses, for example, die out in 36-48 hours.
Focus: What happens if viruses have already attached to your cells? Can humic acid help?
RJL: Humic acid binds so strongly to viruses that it can actually displace them from a cell surface. In vitro studies have shown, for example, that if you allow herpes simplex viruses to attach to host cells and then add humic acid to the solution, it will displace viruses from infected cell surfaces. That is, humic acid has a greater affinity for the virus than the virus does for the host cell. Thus, humic acid can actually displace a virus even after it has attached itself to the surface of a cell.[6]
Focus: That’s quite amazing—that this natural substance can displace viruses that have already locked onto cells. Is this true of any humic acid from around the world?
RJL: No. Humic acid varies dramatically from site to site. Humic acids from different deposits have very different physicochemical properties. Just like coal—the coal from South Africa is very different in makeup than the coal from Birmingham in Britain. For instance, one of the better-known humic acid deposits in the United States occurs in the state of New Mexico, where humic acid is mined for agriculture–as a fertiliser–and also for the petroleum industry as a drilling mud additive. From an agricultural standpoint New Mexico humic acid is great, but it is not very effective at combating human viruses. A lot of the research I carried out in the early days was simply obtaining samples of humic acid from around the world and testing them to see which ones were efficacious against human viral disease. Remember, humic acid is the result of composted organic matter that is 50-100,000 years old, and that can be found almost anywhere—places where there are freshwater deposits and vegetation living around freshwater lakes, other places where there are saltwater deposits and decomposed organic matter at the edge of marine environments. Some humic acids come from decomposed forests, others from marshes, peat bogs, or scrub-brush. Any plant can be composted into humic acid, but the enormous variety of plant life means that each source of humic acid is unique.
Focus: Once you found the ideal antiviral humic acid, what did you do?
RJL: The next challenge was to purify and sterilise it without degrading it. When you first dig humic acid out of the ground it is dark-brown or even black. Shilajit is a very crude form of humic acid that has been used around the world for hundreds (if not thousands) of years. The most familiar form of humic acid looks like coal, and is sometimes called leonardite or brown coal—though it isn’t actually coal. So, the challenge was to extract the humic acid without damaging it. Methodologies suitable for sterilisation of the final processed product also took very considerable research and development. (The original microbes that created the humus are of course long since dead, but other bacteria and moulds flourish in such soil deposits.) Overall, ten solid years of research and development were required to identify a quality source of humic acid that could also be purified and sterilised without diminishing its effectiveness as a human antiviral agent.
Focus: If one takes humic acid orally, when do peak blood levels occur?
RJL: Peak levels occur at about four hours. By eight to twelve hours the substance is pretty much cleared out of the bloodstream.
Focus: Do you think it has any other special properties beyond being a great mineral source and a potent antiviral?
RJL: Some researchers claim it boosts the immune system, but I’m not convinced it does so directly.[7] I think that humic acid’s wide spectrum of important trace minerals, coupled with its antiviral properties, result in a stronger immune system indirectly. Some of the trace minerals are present in very, very tiny amounts—just a few parts per million—but that’s exactly what we need to support enzyme functions among other things. I also think there are a lot of viruses we are all carrying that haven’t yet been identified (“stealth” viruses). But humic acid will bind to them, regardless.
Focus: That just shows you the broad-spectrum action of humic acid, so that it’s likely to work on many viruses we carry that have not yet been identified. I assume you take it yourself?
RJL: Of course. And I haven’t had a cold or the flu since 2004. Not one.
References
[1] F. J. Lu, S. N. Tseng, et al. In Vitro Anti-Influenza Virus Activity of Synthetic Humate Analogues Derived from Protocatechuic Acid. Arch. Virol. 2002, 147(2), 273-284 View Abstract
[2] C. E. J. van Rensburg, J. Dekker, et al. Investigations of the Anti- HIV Properties of Oxihumate. Chemotherapy 2002, 48(3), 138-143. View Abstract
[3] G. Kornilaeva, A. Becovich, et al. New Humic Acid Derivative as Potent Inhibitor of HIV-1 Replication. Med. Gen. Med. 2004, 6(3), A10360 View Summary PDF
[4] R. Kloecking, B. Helbig, G. Schotz, et al. Anti-HSV-1 Activity of Synthetic Humic Acid-Like Polymers Derived from p-Diphenolic Starting Compounds. Arch. Chem. Chemother. 2002, 13(4), 241-249
[5] Laub Biochem Specialty Labsl, 2001-2002, research conducted by contract for Virology Branch of the Antiviral Research and Antimicrobial Chemistry Program (Dr. Christopher Tseng, Program Officer), Division of Microbiology and Infectious Diseases (DMID) Screening and Testing Program for Antiviral, Immunomodulatory, Antitumor and/or Drug Delivery Activities, National Institutes of Allergy and Infectious Diseases (NIAID), under the auspices of the National Institutes of Health (NIH, Bethesda, Maryland)
[7] G. K. Joone, J. Dekker, et al. Investigation of the Immunostimulatory Properties of Oxihumates. Z. Naturforsch. C: J. Biosci. 2003, 58(3/4) 263-267. PMID: 12710739 View AbstractLinkedInFacebookTwitterEmailPrintMor